Antibiotic Resistance in Preschool Children Essay

Antibiotic Resistance in Preschool Children Essay

Antimicrobial resistance (AMR) is an expanding problem and according to the World Health Organization (WHO), is on track to become a major barrier to global health. Antimicrobial resistance is defined as resistance of certain microorganisms to antimicrobials originally designed to treat them. The threat is so serious; AMR is on course to reverse modern medicines’ accomplishments leading us to a post antibiotic era where common illnesses could routinely be lethal. In a statement released by the WHO, Dr. Keiji Fukuda states, ‘Effective antibiotics have been one of the pillars allowing us to live longer, live healthier, and benefit from modern medicine. Unless we take significant actions to improve efforts to prevent infections and also change how we produce, prescribe and use antibiotics, the world will lose more and more of these global public health goods and the implications will be devastating'(WHO, 2014 p 1). The Centers for Disease Control and Prevention (CDC) estimate that AMR accounts for roughly 23000 deaths per year in the United States (US) and approximately 25000 per year in Europe (CDC, 2013). AMR to bacteria such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Streptococcus pneumoniae have reached alarming levels with 5-6 out of 6 WHO regions reporting >50% resistance to normal treatment options. Streptococcus pneumonia in children < five can be attributed to 826,000 deaths per year (Wang, George, Purych, & Patrick, 2014). Antibiotic Resistance in Preschool Children Essay Review of Literature In an article by Vernet, Mary, Altmann, Doumbo, Morpeth, Bhutta and Klugman, the authors examine the organisms causing the biggest threats.

ORDER  HERE A PLAGIARISM-FREE PAPER HERE

Tuberculosis (TB) and malaria are becoming resistant to antimicrobials with drug resistance found in 10% of TB cases. Severe acute respiratory infections (SARIs) lead to approximately 1.4 million deaths of children <5 years of age. Gram negative bacteria resistant drugs such as carbapenems are increasing. Gaining in numbers is Methicillin-resistance staphylococcus aureus (MRSA) where 38% of all staph aureus infections were resistant. In Asia, AMR accounts for an additional 96000 newborn deaths per year (Vernet et al, 2014). An article found in the International Journal of Students' Research (Deshpande and Joshi, 2011) discusses the rising cost of healthcare spending as a direct result of AMR and the worldwide impact. The increase in global commerce and travel results in an increase in AMR especially when primary drug resistance occurs and practitioners treat with pricier second and third choice drugs. Another alarming trend is the spread of resistant nosocomial infections to the community and an increasing prevalence with more global travel between developing and developed countries (Keown, Warburton, Davies & Darzi, 2014). In an article by Freire-Moran, Aronsson, Manz, Gyssens, So, Monnet and Cars (2011), the authors discuss the prevalence of AMR worldwide and the increased threat due to limited treatment options. Estimates include roughly 25000 deaths per year in Europe due to AMR and mortality from Gram negative blood stream infections was approximately 43% (Freire-Moran et al, 2011) Interventions WHO has identified interventions needed by the global community to curb the growth of AMR. The interventions involve collaboration between global entities such as governments, nongovernment agencies such as WHO and professional groups such as the American Medical Association (WHO, 2001). This collaboration includes improved surveillance of antibiotic use and bacterial culturing programs, monitoring for fake antimicrobials and providing incentives for the creation of new antibiotics. In an article by Uchil, Singh-Kohli, Katekkhaye and Swami (2014), the authors cite the need for programs controlling AMR, control of antibiotic dispensing facilities, requirement of pharmaceutical companies to report antibiotic dispensing and regulating antibiotic dispensing requiring prescriptions. Additional interventions require standardization of infection control practices, surveillance programs for AMR and standardized practices for the handling of culture specimens with faster result times allowing for the narrowing of antibiotic coverage (Uchil et al, 2014). At risk populations AMR knows no global boundaries and affects people in all cultures, socioeconomic situations and continents. Despite AMR being global, populations at highest risk for antibiotic resistance are those populations at risk for infections in general; the young, elderly and immune-compromised individuals such as those infected with HIV and tuberculosis, transplants or under treatment for cancer . In a study found in Drug Resistance Updates (Grundmann, Klugman, Walsh, Ramon-Pardo, Sigaupue, Khan'Stelling, 2011), the authors corroborate these at risk populations and further define at risk populations to include people living in developing countries with low gross domestic product (GDP) due to poor access to proper health care and poor sanitation conditions. These populations are put at risk due to the increase of global travel and the transfer of resistant organisms through travel. They further define at risk populations to include people in countries of political conflict, countries post disaster resulting in people living in close, cramped living conditions (Grundmann et al, 2011). In a study by Vernet, et al (2014), at risk populations should also include infants and mothers because of poor prenatal, intra-natal and postnatal care and poor sanitary conditions resulting in as much as 56% of all neonatal deaths in developing countries. Services, health practices and gaps Current practices in place to deal with AMR include the interventions listed above such as improved sanitation in developing countries, improved and standardized infection control practices in developing and developed countries. The WHO addresses all of these interventions along with many of the developing and developed nations. Keown et al (2014) suggest required minimum sanitation standards worldwide. Health practitioners continue to collect cultures identifying organisms to tailor antimicrobials for sensitivity and Deshpande and Joshi (2011) discuss in their article the careful use of antibiotics. Antibiotic Resistance in Preschool Children Essay Also important is the early detection of microorganisms and many hospitals have result times of at least 24 hours for culture and sensitivities (Deshpande & Joshi, 2011). During the waiting period, broad spectrum antibiotics are used. Gaps in health practices occur worldwide but especially in developing countries such as India and the Sub-Saharan African nations. In an Indian study by Kumar, Adithan, Harish, Sujatha, Roy and Malini (2013), the authors examine the state of AMR in India. Many of the challenges facing India involve limitations on surveillance data; lack of policies and procedures in place, enhanced antibiotics dispensing practices and uncontrolled antibiotic sales. They also lack sanitation and infection control practices and a deficiency in cognizance of AMR nationally. These issues are not unique to India but are a worldwide problem hence the global health crisis of AMR (Kumar et al, 2013). In a study by Mustafa, Wani and Wali, (2013) the authors examine the awareness of AMR by employees of a hospital in India. They concluded that an increase in awareness by all employees but specifically health practitioners regarding the scope of this threat was desperately needed. This study is representative of the lack of global awareness or apathy for this growing problem. Stakeholders Stakeholders can be divided into groups including policy creators and government officials, manufacturing and the academic community, agricultural representatives, health care professionals and the public including patients (Keown,et al, 2014). The role government and officials of health organizations such as the WHO and CDC play involve raising and maintaining awareness of this global threat. They create legislation and standards for the pharmaceutical, agriculture, food and medical industries. Industry such as the medical, research and pharmaceutical companies and academic institutions aid in the creation and promotion of new antimicrobials, research techniques and medical advances for controlling AMR. The agricultural industry assists in controlling AMR by regulating the use of antibiotics as growth aids in the food industry. Health care professionals are the first line of defense in the fight against AMR. Doctors and other prescribing health care professionals are accountable for responsible prescribing of antibiotics, infection control practices, surveillance of infections and patient teaching regarding the proper usage of antibiotics. Other health care professionals such as pharmacists and nurses assist physicians in patient teaching and pharmacists specifically are the primaries for patient teaching regarding the effective and responsible use of antibiotics. Finally, patients and the public play an integral part in the fight. They are responsible for appropriate antibiotic use including completing antibiotic courses, avoiding self-medication and infection control within their homes and workplaces (Keown et al, 2014). Comparison of United States versus India and developing countries In the US, AMR is addressed at each healthcare facility and with each practitioner. The CDC addresses the issue of AMR through their surveillance and awareness programs. Awareness of the global threat of AMR is lacking in the US and worldwide despite the work of the CDC and WHO. Most citizens are not aware of the pressing issue of AMR and how important stewardship of antibiotics is to the health of the world. While the US may be advanced in its infection control practices and its use of antibiotics, these issues still exist and AMR is seen daily in the US with microorganisms such as carbapenem resistant enterococcus (CRE), MRSA and klebsiella pneumonia. Due to global travel and the spread of AMR through this travel, the US remains open to increasing numbers of AMR. The developing countries such as India struggle with issues of infection control, sanitation, the availability of antibiotics and financial constraints. Added to the financial constraints of treating these infections is the lack of qualified practitioners and healthcare available to the citizens of these developing countries. Programs and gaps International organizations such as the WHO and the Food and Agriculture Organization of the United Nations (FAO) have established programs to create awareness. The FAO takes a 'one health' and 'food chain' approach because antimicrobials are widely used in agriculture and livestock production. They promote responsible antibiotic use and efficient, healthy livestock and agriculture practices (FAO, nd). WHO creates awareness through World Health Day in 2011 by focusing on AMR (WHO, nd). In 2013, the World Innovation Summit for Health developed programs to increase consciousness, promote responsible antimicrobial use, improving sanitary conditions worldwide, improved surveillance of AMR and antimicrobial dispensing and encouraging exploration of new antimicrobials (Keown et al, 2014). A program established by National Endowment for Science, Technology and the Arts called the Longitude Prize offers a financial award to individuals finding solutions to scientific challenges. The hope is that scientists will tackle AMR in hopes of winning this coveted prize. A program by Innovative Medicines Initiatives offers monies specifically for the development and production of new antibiotics (Keown et al, 2014). The CDC and the European Center for Disease Prevention and Control (ECDC) both acknowledge AMR and produce literature regarding this threat but major awareness and response programs are lacking. Gaps exist in all aspects of this threat ranging from awareness and surveillance to research and development. Policy The European Commission (EC) has addressed policy issues with regards to AMR by enacting the European Community Strategy against antimicrobial resistance in 2001. Coupled with the Commission's 2011 renewal of these policies, it addressed the requirements by all members to reinforce surveillance practices, promote responsible antibiotic use, promote responsible use by the animal industry, proper infection control practices and national awareness programs (EC, 2015). The Infectious Diseases Society of America (IDSA, nd) has instituted policies similar to the EC encouraging appropriate antibiotic use. The US through the CDC has made recommendations regarding antimicrobial resistance but no formal, legal policies are in place (CDC, 2015). The FDA has issued several mandates regarding antimicrobial resistance and coordinates through the National Antimicrobial Resistance Monitoring System (NARMS) the surveillance of resistance specifically found in food (FDA, 2015). While there are many programs and organizations addressing this issue, there are no legal or monetary ramifications for not following the guidelines and in that respect policy is weak. Recommendations Recommendations for curtailing AMR include a multi-tier approach involving governments and other legislative agencies, manufacturing such as pharmaceutical companies, health practitioners and the public. A public awareness program complete with media coverage should begin along with surveillance programs to regulate the dispensing of antibiotics and bacterial culture programs. Governments should collaborate and institute policies and procedures for regulation and surveillance of antibiotic dispensing. Health practitioners should be educated on the responsible dispensing of antimicrobials, use of cultures to determine appropriate antibiotic coverage and all parties would be held accountable for these behaviors. Conclusion The late Elinor Ostrom likened AMR to climate change 'in the sense that both phenomena involve non-renewable global resources, both are caused by human activity and are intrinsically linked to our behaviour. The problem can only be addressed through international cooperation' (Cars, Hedin & Heddini, 2011, p 1). We have a responsibility to ourselves and future generations to treat this issue with the importance and gravity it deserves. REFERENCES Antimicrobial Resistance. (2015).

The term antibiotics encompass a wide range of chemical substances that are produced naturally, semi-synthetically, and synthetically, and are used to inhibit (bacteriostatic) bacterial growth or kill them (bactericidal) [1,2,3]. They are categorized based on their effects as either bacteriostatic or bactericidal, and on their series of efficacy, as narrow or broad-spectrum antibiotics. Furthermore, the classes of drugs that are more widely used in agriculture at the global level, which are of growing scientific concern with regards to their potential adverse effects and risk management steps, include the tetracyclines, aminoglycosides, β-lactams, lincosamides, macrolides, pleuromutilins, and sulphonamides [4,5,6,7]. Gelband et al. [8] noted that these antibiotics have the same mode of actions or belong to the same general classes as those used for humans; a situation that demands the judicious use of these drugs in animal farming, as there is bound to be a degree of interaction between animals and humans.
Markedly, the antibiotic consumption patterns in agriculture vary across regions and countries in the developing world, and even antibiotics that have been banned in other countries, including the developed countries, are still being used in most developing countries [9,10]. However, the antibiotic consumption profiles in developing countries are greatly influenced by the gross abuse and misuse of antibiotics due to their availability over the counter, through unregulated supply chains as well as the purchase without prescriptions [11]. Also, Van Boeckel et al. [12] projected that the antibiotic consumption will approximately double in the BRICS countries consisting of Brazil, Russia, India, China, and South Africa. The forecast is propelled by a shift to large-scale farms requiring the routine use of antibiotics to maintain the health of animals and productivity. The shift is caused by the progress in consumer demand for animal products. Resistance to antibiotics is an inherent side effect associated with the overuse, abuse, or substantial use of antibiotics [13,14].
The antibiotic resistance pattern varies between regions and countries corresponding to the degree of antibiotic consumption, which is guided and regulated by the antibiotic policies of a particular country [15,16]. Nevertheless, China has been registered as the world’s leading producer and consumer of both animals and human antibiotics. Antibiotic-related crisis is ascribed to the misuse of antibiotics that are, ultimately, discharged into the environment, the presence of antibiotic residues (parent antibiotic or its metabolites or both found in animal derived products) in livestock products and wastes, and lastly, the lack of stringent and effective supervision and control over antibiotics production, use, and disposal [17]. Human activities in response to industrialization drastically heightened the availability of antibiotic residues in food and the environment, and the development and distribution of antibiotic resistant bacteria along with their resistance genes, thus causing an increase in the abundance of resistant bacteria and genes [4].
The antibiotic residues, and antibiotic-resistant bacteria and resistance genes are considered as environmental pollutants and responsible for a tenacious public health crisis throughout the globe [18]. The health challenges linked to antibiotic-resistant microorganisms are more about restricted therapeutic remedies in most developing countries that lack access to good quality treatment, thus, accentuating infection as an important root of morbidity and mortality [19]. However, the soil and water environment have been regarded as vital reservoirs and sources of antibiotic resistance [20,21]; more so, as they are affected by agriculture [22]. Not only does the administration of antibiotics in food-producing animals facilitate antibiotic resistance, but it may also result in the presence of antibiotic residues (including the parent compounds or its metabolites, or both) in animal-derived products (muscles, kidney, liver, fat, milk, and egg) available for human consumption. However, these antibiotic residues have been reported to exert a huge and negative impact on public health and food safety with regards to drug toxicity, immunopathological diseases, carcinogenicity, allergic reactions, and drug sensitization, amongst others [7,23,24,25]. These adverse impacts tend to be influenced by land use, contaminated water sources, national policies (that symbolize production, trade, animal health, and food security), national and international trade, animal demography, and interactions between the human populations as well, as they are reported to vary considerably between regions and countries [26].Antibiotic Resistance in Preschool Children Essay

In a nutshell, antibiotic resistance is observed as a “One Health subject”, both as a cause and solution encompassing the interactions between humans, animals, and the environment [27]. Accordingly, in an attempt to contain antibiotic resistance, the World Health Organisation instituted a Global Action Plan (GAP) which demands that each country should develop national action plans in line with the key actions of the GAP, but with respect to its financial resources and extent of its problems [28]. Surveillance and monitoring of antibiotic use and antibiotic resistance is one facet of the strategies against antibiotic resistance. However, developing countries encounter challenges regarding surveillance systems because of lack of capacity and integration [29].
This paper assembles information about antibiotic and antibiotic resistance in animals, animal-derived products, and the agriculture-impacted environment. Basically, it covers antibiotics used in agriculture, ways through which they end up in the environment causing antibiotic pollution, and on the other hand, the consequential effects of antibiotic residues on public health. In depth, the consequential and devastating effect of antibiotic use, known as antibiotic resistance, has been deliberated on to include salient aspects, such as the determination of antibiotic resistance, antibiotic resistance in livestock farming, as well as antibiotic resistance in manure-impacted environment (soil and water).
2. Antibiotics in Agriculture
The use of antibiotics is not only constrained to the clinical settings, as prescriptions involved in the therapeutic regimens for the eradication of diseases in humans. It is also employed in livestock farming, where antibiotics can be used for disease treatment of animals, and in sub-therapeutic levels in concentrated animal feed for growth promotion, improved feed conversion efficiency, and for the prevention of diseases [22,30,31]. Of great concern, the uses, types, and mode of actions of the antibiotics employed in agriculture and veterinary practice are closely related or the same (that may belong to the same general classes, function and act in similar ways) to those prescribed to humans [32]. Clearly, the choice of antibiotics and the antimicrobial consumption pattern demonstrates geographical variation across the continents being influenced by the food animal species, regional production patterns and types of production system, intensive or extensive farming, purpose of farming (commercial or industrial or domestic), lack of clear legislative framework or policies on the use of antibiotics, as well as the size and socioeconomic status of the population, and the farmers in particular [12,33].Antibiotic Resistance in Preschool Children Essay
The inclusion of nonessential antibiotics in animal feed for growth promotion purposes remains largely unregulated in the underdeveloped countries [34]. The persistent use of these nonessential antibiotics in livestock farming can be attributed to the expansion and greater concentration of farmlands, inadequate governmental policies, and control over the use and sales of antibiotics, reduced use of infection control measures, and the unwillingness of farmers to execute delegated changes in farm practices [35]. Developing countries continue to employ the antimicrobial agent for growth promotion to maintain the healthy state of the animals, to increase productivity, and raise incomes for the farmers [36,37]. However, these are contradictory to the Swedish agricultural data, as it recorded no loss of production after the ban exercise [36].
Altogether, Boeckel et al. [12] noted that on a global scale, the average antimicrobial agent consumed per annum of animal produced (per kg) varied across the animal species with values of 45 mg/kg, 148 mg/kg, and 172 mg/kg associated with cattle, chicken, and pigs, respectively. Equally, their mode of administration differs with the animal types. In this light, Apata [38] noted that antibiotics were added to water and feed for chicken in sub-therapeutic levels for growth promotion and prophylaxis. This had a devastating effect, as even healthy birds were unnecessarily exposed to antibiotics. Moreover, as these birds compete for food sources, eventually, there exists a difference in the doses consumed between the individuals, with one receiving a higher dose than others. This introduces another differential in the selective pressure on commensals, which could lead to the selection of resistant commensals that would eventually end up in the environment [39]. Singer et al. [40] accorded the administration of antibiotics in animal feed or water, in which the animals are reared in groups, making it difficult to isolate only the infected animals, as well as that the isolation process could be stressful to the animals and dangerous to the veterinarian who has to administer the antibiotic process.
Contrarily, Sekyere [41], in their study, demonstrated the administration of antibiotics to pigs via the intravenous route for treatment, and in this case, shunned the exposure of healthy animals to antibiotics. However, this mode of administration might cause the accumulation of these drugs in adipose tissues, thereby posing a health risk to consumers of pork fat. In addition, Cromwell [42] mentioned that varying quantities of antibiotics are being employed at the different stages of livestock production, especially in pig farming, that incorporates four stages viz. gestation, farrowing, weaning, and finishing. Kim et al. [43] emphasized the significant difference in the use of antibiotics amongst piglets, fattening pigs, and sows during therapy and growth promotion; antibiotics are employed in pig farming for treatment, metaphylaxis, prophylaxis, and growth promotion. The authors further recorded a significant difference in the use of antibiotics between the three production systems in poultry farming, including breeding poultry, broilers, and laying hens. Accordingly, these may release different masses of remnant antibiotics into the environment [30].Antibiotic Resistance in Preschool Children Essay

ORDER   HERE NOW

Generally, in the developing countries, the level and rate of antibiotic utilization in the farming sector might be influenced by the manner in which the farmers acquire (over the counters) and use these antibiotics (multidrug practices), and also, the presence of existing factors. The existing factors include a high prevalence or level of infections, profound scarcity of state management and development strategies, shortfall in husbandry zone planning, negligible hygienic practices in livestock husbandry in conjunction with the presence of an integrated agricultural system [32,44]. Specifically, in Vietnam, there has been reported cases of frequent and uncontrolled epidemic diseases, such as the porcine reproductive and respiratory syndrome (PRRS), foot and mouth disease, and digestive tract infections and reproductive disorders in piglets and exotic sows, respectively. The disease conditions necessitate the wide use of antibiotics by producers in livestock for the prevention and therapy of diseases as one of the most likely approaches to combat diseases [45]. Moreover, the country practices an integrated agriculture–aquaculture farming system, whereby the aquaculture is being sustained via livestock and human wastes. This further strengthens the risk of exposure of humans, animals, and environment to available antibiotics [43].
Similarly, Guetiya Wadoum et al. [25] noted the multidrug practices by farmers in addition to the use of formulations with low doses of antibiotics that do not indicate the active ingredients, or the withdrawal periods in poultry farming, in Cameroon. As a result, they diagnosed the diseases that occurred or threatened the chickens and decided on the types of antibiotics and dosage to employ, as well, the veterinarians even gave wrong diagnosis about the diseases amongst the birds to encourage and promote the sales of their drugs. What a bizarre situation that creates chances for the abuse of antibiotics? Several authors have demonstrated the indiscriminate use of antibiotics by farmers, and attributed it to lack of knowledge on the prudent use of these drugs, and the possible adverse effects associated with their abuse, non-adherence to manufacturer’s instructions, and the antibiotic withdrawal periods, unavailability of veterinarians and their services. Furthermore, inexperienced farmers relied on the knowledge and advice of experienced farmers and local drug sellers for drug administration, and above all, wealthy farmers tended to employ multiple antibiotics, since they have the potential to acquire the drugs. Also, very few animals are referred to the laboratory for diagnosis to identify the causative agent and to assess the antibiotic susceptibility testing prior to antibiotic application [10,32,37,41,46].
As a consequence, some of these underdeveloped countries still employ some antibiotics, such as chloramphenicol, tylosin, and TCN (a powder mixture that consisted of oxytetracycline, chloramphenicol, and neomycin) which have been banned for use in the developed countries. Accordingly, these drugs have been associated with aggravation of kidney disease (neomycin), carcinogenicity, mutagenicity, and development of aplastic anemia in humans (chloramphenicol) [47,48]. In addition, Guetiya Wadoum et al. [25] mentioned that TCN and tylosin had to be withdrawn for 21 days and 10 days respectively, before the sales of eggs or meat; a situation which is quite difficult for the farmers to implement and respect. This expedites the consumption, by humans, of poultry products harbouring antibiotic residues.
Notwithstanding, the available limited data on antimicrobial utilization in livestock farming ensues the partial reports of antimicrobial consumption and sales. This is due to the lack of surveillance systems subsidized by the government to monitor antimicrobial use and resistance, the lack of knowledge and the reluctance of food animal producers, animal feed producers, public health and veterinary officers and veterinary pharmaceutical companies to provide such in-depth measurements [49,50]. In conclusion, the information presented herein is deduced from the findings obtained by several authors who have previously conducted investigations on antibiotic use and antibiotic resistance, yet the rate of antibiotic usage and antibiotic resistance is alarming; imagine the scenario in which the real/actual data has to be presented. Seemingly, there is a need to call for cooperation or team collaboration from individuals, farmers, veterinarians, consumers, and local vendors of pharmaceutical products for the prudent use of antibiotics both in the clinical and agricultural settings across the nations or countries, in a bid to circumvent the rising antibiotic resistance of bacteria [51].
2.1. Antibiotics’ Introduction into the Environment
The indiscriminate and abusive use of antibiotics can result in higher concentrations of antibiotics in the environment, which can be termed as antibiotic pollution. The sources via which antibiotics can be released into the environment are diverse, including the human waste streams, and wastes from veterinary use and livestock farming [3]. Antibiotics used for prophylaxis or therapy in humans contaminate the human waste streams, likewise, the antibiotics used in animals for growth promotion, prevention, and treatment equally contaminate the animals’ waste streams. Thus, these are considered as prime sources of antibiotic release into the environment [52]. This is because the administered antibiotics are not fully metabolized, and are released unchanged into the environment, i.e., water, manure or soils. The amount and rate at which the antibiotics are being released into the environments depends on the specific antibiotic and its administered dosage, as well as the species and the age of the animals [51]. Nevertheless, these waste streams will contain both the antibiotics and resistance genes; both considered as pollutants, and their fate in the environment differ [49].
Furthermore, antibiotics and their metabolites contained in stockpiled animal manure may seep through the pile to surface and groundwater, and also into the soil. This is especially so for antibiotics with high water affinity or which are water soluble, thus making their spread and ecotoxicity in the environment faster, and widely with the aid of water fluidity [53]. In the same view, antibiotics can be introduced into the environment via soil fertilization with raw animal manure, irrigation with wastewater generated from farm activities, or via accidental release by runoffs from farms [54]. Interestingly, Hamscher et al. [55] noted that dust contaminated with antibiotics from farms could equally serve as another route of environmental release of these drugs. Chee-Sanford et al. [56] also emphasized the release of antibiotics into the environment via the dispersal of feed and accidental spill of products, as well as discharges.
In addition, Sekyere [41] noted that pig farmers in some different districts in the Ashanti Region of Ghana do not secure their antibiotics, thereby making them freely accessible for use and abuse by unauthorized persons and children. Also, the farmers disposed of their used antibiotic containers by merely throwing them into drains, refuse dumps, or onto bare ground, instead of burying them as recommended. The author further mentioned that these antibiotics were stored under suboptimal environmental conditions, vulnerable to temperature fluctuations that could accelerate their decomposition, thereby causing a reduction in their concentration and efficacy during administration. Such circumstances promote antibiotic resistance of bacteria living in the gastrointestinal tracts of the animals, due to constant exposure to sublethal levels of these antibiotics, or could even cause prompt administration of an overdose of the antibiotics which is noted to be inefficient. More especially, in commercial and intensive poultry farming, antibiotics may be administered to the entire animal population in feed or water, rather than targeting only the diseased animals. Thus, resistance becomes unavoidable [57]. Interestingly, antibiotics produced naturally by environmental microorganisms, to deter competitors from living space and food, are gradually accumulating in the environment [58]. Seemingly, antibiotics are released from their production facilities in high concentrations into the environment [59]. Also, Sahoo and colleagues [60] noted that antibiotics could be found in the natural environment via improper disposal of out-of-date drugs from pharmaceutical shops, and unwanted, expired household pharmaceuticals.
Accordingly, these antibiotics released usually consist of different types, and consequently, they do not degrade, all at the same time, i.e., they degrade at different rates in the environment over time by the main elimination processes, including sorption, photo degradation, biodegradation, and oxidation [61,62]. Albeit, other applied methods, such as adsorption, filtration, coagulation, sedimentation, advanced oxidation processes have been implemented [63]. Specifically, several findings have demonstrated the use of composting, and anaerobic and aerobic digestion to cause the reduction of the antibiotic’s level in manure, wastewater, and sludge, but these processes vary in efficiency with the category of the antibiotics, the conditions employed for composting, as well as the type of livestock manure [53,64]. Nonetheless, the presence of these antibiotics in the environment may create selective pressure resulting in antibiotic resistance and also the removal processes, reduce the concentrations of these antibiotics, allowing time for the exposed bacteria to develop resistance which may be presented as stress adaptation, co-selection, cross-resistance, and cross-protection.
Moreover, the use of antibiotics urges susceptible bacteria to these antibiotics to develop resistance in a bid to survive. In this view, bacteria prevaricate the inhibitory or bactericidal activities of the antibiotics, and execute resistance by either modifying or altering the target sites (ribosomes) for binding by antibiotics, with the help of ribosomal protection proteins which bind to the ribosomes, thereby preventing the binding and interference of protein synthesis [65,66] or neutralizing antibiotics via enzymes produced by adding acetyl or phosphate groups to the precise site on the antibiotics [67], or finally, via changing of membrane permeability due to the presence of efflux pumps on the cell membrane [68,69]. Furthermore, the sensitive bacteria tend to survive in an antibiotic polluted environment by acquiring antibiotic resistance genes from other bacteria or phages (lateral gene transfer), undergo mutations in specific antibiotic gene targets, and by altering of the bacterial surfaces [70].
2.2. Animal-Derived Products and Antibiotic Pollution vs Public Health Antibiotic Resistance in Preschool Children Essay

In developing countries, food prepared and sold by street vendors is in vogue, and it is still emerging hastily in some countries, notably Indonesia, Cameroon, and Democratic Republic of Congo [71,72]. These foods usually comprise of meat (beef, pork, snails) either raw, roasted, or cooked in sauce/stew, starchy foods and snacks, which are sold in restaurants located in public places (markets, schools, hospitals), on the ground in the streets, and along main roads [73]. It is for this reason that foodborne outbreaks are highest in developing countries, and dawdles as an issue of public health concern worldwide, because it is indicated as one of the significant food safety hazards concomitant with animal-derived foods [74]. Cooked foods sold on the street have a great socioeconomic impact; they create jobs and provide income to low or unskilled men and women, as well as serve as a major channel for the supply of food to financially handicapped individuals or poor and less privileged individuals [75]. However, there is increased meat consumption to meet the protein demand of the population [72].
Antibiotics have been reported to accumulate and form residues at varying concentrations in the tissues and organs of food animals, as presented in Table 1. Billah et al. [24] referred to these antibiotic residues as chemical residues or pharmacologically active substances representing either the parent compound or its degraded products, which are released, gathered, or stored in the edible tissues of the animal, due to their use in the prevention, treatment, and control of animal diseases. Undoubtedly, in Cameroon, Guetiya Wadoum et al. [25] demonstrated the presence of chloramphenicol and tetracycline residues in concentrations above the maximum residue limit (MRL) recommended by the European Union in 2010, in edible chicken tissues (muscle, gizzards, heart, liver, kidney) and eggs. Similarly, Billah et al. [24] detected ciprofloxacin in higher concentration in egg white, but in lower concentration in egg yolk during treatment of the birds. Also, Olufemi and Agboola [76] reported a high oxytetracycline residue in edible beef tissues of cattle slaughtered at Akure, in Nigeria, at violating levels beyond the MRL stipulated by WHO. However, of profound concern are circumstances in which diseased animals and animals undergoing therapy could be sold quickly to save funds, or could be slaughtered and used as food or feed for other animals [43]. This causes difficulties in the prophylactic approach to handling epidemic diseases and health risks to consumers, as well as a negative influence on the environment. Van Ryssen [77] reported the use of poultry litter as a feed to farm animals in South Africa, since it is considered as a bulky protein supplement.
Table 1. Presence of varying concentrations of antibiotic residues in the different animal-derived products in some developing countries.
Table
Ideally, no animal derived product should be consumed unless there is a complete absence of residual amounts of administered drugs. Nevertheless, the intriguing fact is that there are constant detectable levels of residues, identified via the help of markedly improved analytical methods. Therefore, the world regulatory authorities have set the MRL for various veterinary drugs that should be expected and considered safe in foods for human consumption [78,79]. According to Beyene [80], the diet, age and disease status of the animal added to the absorption, distribution, metabolism, and excretion of the drugs, the extra-label drug use and the improper withdrawal times, amongst others, are the risk factors responsible for the development of residues. In this light, farmers are supposed to adhere and implement the right dosages of the antibiotics, as well as observed their withdrawal periods prior to slaughter and market, in a bid to avoid illegal concentrations of drug residues in the animal products. The withdrawal period (clearance or depletion time) defines the length of time required for an animal to metabolize the administered antibiotics under normal conditions, and also, the time needed for the antibiotic concentration in the tissues to reduce to a safe and acceptable level described as tolerance. It can equally be referred to, the time interval necessary between the last administration of the drug under normal conditions of use to animals and the time when treated animals can be slaughtered to produce foodstuff safe for public consumption. Depending on the drug product, route of administration, and dosage form (even with the same active ingredients), the withdrawal periods vary from a day to several days or weeks, and according to the target animals [81].
It has been reported that the health of humans correlates directly with the environment (i.e., their habitat and its components, including plants, animals, microorganisms, and other human beings) and the quality of food that they consume [60,82]. Taking into consideration the growing human population, the changing standard of living conditions, the food shortages, and the greater demands for the intensified production of animal proteins for human consumption across the globe, essential practices to improve on the agricultural and industrial productivity are needed [83]. Of interest is the critical use of antibiotics in agriculture to meet the demands of the rising human population, as the use of antibiotics in this setting has been associated with several benefits. It is therefore anticipated that, in the future, almost all the animals slaughtered and consumed as food must have received a chemotherapeutic or a prophylactic agent of some sort [81]. However, the consumption of these meats, milk, and eggs contaminated with antibiotic residues usually has tremendous impacts on the health of humans. These effects may be direct or indirect, owing to the high dose of the residues, which must have accrued over a prolonged period [81]. They can be exhibited as drug hypersensitivity reactions, aplastic anemia, carcinogenic, mutagenic, immunologic and teratogenic effects, nephropathy, hepatotoxicity, disruption of the normal flora of the intestines, a reproductive disorder, as well as the development of antibiotic-resistant bacteria in the gut [80,81,84].Antibiotic Resistance in Preschool Children Essay
3. The Great Challenge: Antibiotics Resistance
The routine employment of antibiotics, for prevention and growth promotion purposes in livestock farming, selects for antibiotic resistance among commensal and pathogenic bacteria. Owing to the fact that most of these antibiotics are not fully metabolized but released into the environment as waste products, antibiotic resistance has an ecological impact, since these waste products still have the potential to influence the bacteria population and promote antibiotic resistance. Cogliani et al. [36] pointed out that the low concentrations of these antibiotics in the environment bring about random and spontaneous mutagenesis. Therefore, the environment has been viewed as a plausible reservoir or pool of antibiotics and antibiotic-resistant bacteria, as well as their resistance genes [97]. It is a situation of great concern to public health facilities worldwide, as bacteria have the capability to transfer resistance genes between strains of the same species and between different species [98]. This is, however, possible due to the fact that the antibiotic resistance genes are located on elements, including transposons, integrons, and plasmids, that can be immobilized [99]. The transmission of these resistance genes is termed horizontal gene transfer (HGT) or lateral gene transfer (LGT), and it does occur via transformation, conjugation, and transduction processes [100,101]. These processes are responsible for the increasing antibiotic resistance worldwide (because of gene transfers between different bacteria species). LGT has been implicated in the distribution of numerous antimicrobial-resistance determinants, and as the cause of an epidemic in nosocomial and community infections, by conferring resistance to many classes of antimicrobials, which leads to multidrug resistance [102,103]. Moreover, the employment of broad-spectrum antibiotics creates selective pressure on the bacterial flora, thus increasing the advent of multidrug-resistant bacteria which results in the production of new antibiotic-resistant bacteria with cycles of unpleasant treatments [70].
(a) Prevalence of antibiotic resistance in some environmental sources
Several authors have investigated the prevalence of antibiotic resistance of some bacteria in different environmental samples. These include the following: Ejo et al. [104] in their findings observed an overall prevalence rate of 5.5% of Salmonella isolates identified from raw meat, eggs, milk, and minced meat and burger samples in Ethiopia. The isolates demonstrated relative resistance to ampicillin, tetracycline, and sulphamethoxazole–trimethoprim, with a prevalence of 47.6%. Rasheed et al. [105] equally noted an overall incidence of 14.7% of drug-resistant E. coli obtained from vegetable salad, unpasteurized milk, raw chicken, raw meat, and raw egg surface, with 4% of these isolates exhibiting the extended-spectrum β-lactamase activity. In addition, Carballo et al. [106] recovered three tetracycline residues and sixty-three antibiotic-resistant Gram-negative bacteria that presented with percentage resistance between 33.3% and 66.7% to five well-known antibiotics employed in livestock farming, viz. tetracycline, chloramphenicol, nalidixic acid, sulphamethoxazole, and ampicillin.
Similarly, Zhu and colleagues [107], in their findings, noted the high levels of tetracycline concentration in manure and soil samples procured from three large commercial swine farms, from three different regions in China. The authors further revealed a great diversity of antibiotic resistance genes (149 unique ARGs), and emphasized the absolute abundance of 43% of the aminoglycoside phosphorylation gene aphA3 in all the manure samples. In the same country, Gao and co-workers [108] equally unravelled the cefotaxime (CTX)-M gene as the most prevalent extended-spectrum beta-lactamase (ESBL) gene found in E. coli isolates recovered from both pig farm and soil samples. Apparently, Xiao et al. [21], in a metagenomics analysis of paddy soils from China, provided a broad spectrum profile of antibiotic resistance genes, with multidrug resistance being the most dominant at a level of 38–47.5% of all the samples collected.
Furthermore, Lin et al. [109] isolated and characterized one hundred and thirteen enteric bacteria from the Mhlathuze River, KwaZulu-Natal province, South Africa. Of these bacteria, 75.2% were multidrug resistant, and the enteric isolates obtained from downstream (urban and industrial regions) exhibited greater antibiotic resistance, unlike those from upstream (rural vicinity). This suggests that environmental, industrial, and human activities have a huge impact on the level of environmental antibiotic resistance. Wahome [110] noted the microbial contamination of groundwater samples obtained in Ongata Rongai, Kajiado North County, Kenya, with enteric pathogens including Pseudomonas aeruginosa, Shigella and Vibrio species, E. coli, and Salmonella. The enteric pathogens exhibited high resistance, between 87.5% and 98.5%, to ampicillin, kanamycin, and sulfamethoxazole.Antibiotic Resistance in Preschool Children Essay
(b) Methods of determining antibiotic resistance of bacterial isolates
The antibiotic resistance profile of bacterial isolates to available antibiotics can be determined by using multiple culture-based methods, with the key feature to isolate the target organism through growth on general multipurpose or selective and/or enriched microbiological media, and subsequent evaluation of their growth in response to specific antibiotic concentrations. The culture-based methods offer a link between antibiotic resistance measurement both in the environment and human clinical setting [111]. These cultured-based techniques are designed as susceptibility tests, and the resistance of the bacterium can be deduced directly from the susceptibility testing. The antibiotic susceptibility test involves both qualitative diffusion and quantitative dilution methods, amongst which is the Kirby–Bauer disc diffusion technique that implements the guidelines adpoted from Clinical Laboratory Standards Institute (CLSI) [112]. In this methodology, the size (diameter) of the zone of inhibition developed around each disc placed on plates of microbiological medium inoculated with the pure culture of bacteria isolate is considered as the degree of sensitivity [113]. The antibiotic susceptibility test with disc diffusion test is, however, regarded as a qualitative test to classify an organism as being susceptible or resistant, and paves the way for the better quantitative tests.
Determining the minimum inhibitory concentration (MIC) of an antibiotic against a bacterial isolate ensures the best quantitative estimate of susceptibility. The MIC describes the lowest or least concentration of a drug that is required to inhibit visible bacterial growth after overnight incubation [114]. The MIC value gives an insight into the degree of resistance, the resistance mechanisms, as well as the resistance genes. It can be determined both by micro broth dilution in microplates [115], and agar dilution [116]. In between, the E-test (Epsilometer test) combines the diffusion and dilution theories in susceptibility testing, whereby it determines whether the isolate is resistant or susceptible, based on the clear zone of inhibition. At the same time, it quantifies the sensitivity of the isolate by giving a discrete MIC value at the point where the clear zone of inhibition intersects on the test strip that harbours a predefined gradient of continuous antibiotic concentration ranges [117]. Nevertheless, owing to the inherent ability of microbiological agars to detect contamination of inoculum, Jenkins and Schuetz [116] suggested that agar-based methods are more reliable for the detection of antibiotic resistance, unlike the broth dilution methods. In general, both the agar-based and broth dilution methods are faced with challenges, including cost, and that they are time-consuming and labour intensive [111]. It is worth mentioning that the resistance level of a bacterium greatly depends on the type of test and test conditions applied for the determination of resistance, as well as the kind of antibiotics and its mode of action [118]. It is necessary to conduct continuous surveillance of the antibiotic resistance profile of bacteria, since bacteria are vulnerable to develop unpredictable resistance patterns, based on their genetic plasticity. In addition, the susceptibility patterns of a particular bacteria changes with time, geographical location, country, and the prevailing environmental conditions [16,119]. The recovered information gives knowledge and serves as guidelines in antibiotic selection for treatment, to reduce the use of broad-spectrum antibiotics, and also to slow down resistance development, hence predict future resistance in bacterial isolates [113,120].Antibiotic Resistance in Preschool Children Essay
(c) Zoonoses and agriculture versus clinical setting
Taking into consideration the routine use of the same antibiotics with similar modes of action both for animal and human purposes, added to the report of zoonoses, which are bacterial infections in humans caused by animal pathogens, including Salmonella spp., Yersinia enterocolitica, Listeria monocytogenes, Staphylococcus spp., Campylobacter jejuni, Enterococcus spp., and Escherichia coli, it is somewhat obvious that antibiotic resistance can be transferred from animals to humans [121]. These bacterial pathogens are of prime importance due to their public health implications, are easily detectable indicator organisms which signify the presence of fecal contamination of the environment, have the potential to acquire resistance genes via lateral gene transfer, and lastly, they can develop resistance to a broad spectrum of last-resort antibiotics [122]. Wegener [123] affirmed that the public health consequences perpetrated by zoonotic pathogens are ever-challenging to evaluate. The consequences involve complex production and distribution systems of food and animals, dissemination of resistance genes and bacterial clones, increased mortality and morbidity, and higher cost in the treatment of disease as well as infections that would have otherwise not have occurred.
These zoonotic pathogens develop resistance in response to the antibiotics used in food animals, and the same strains colonize both animals and humans, and the antibiotic resistance genes can easily spread among the bacterial species or clones that are phylogenetically related [124]. Therefore, these zoonotic bacteria can serve as vectors of antibiotic resistance genes. The resistance can be transferred from animal to animal, or animals to humans, either directly via contact, or indirectly through the food chain, water, sludge-fertilized soils and manure [125]. More specifically, humans can come into contact with antibiotic-resistant bacteria and resistance genes either directly via immediate exposure to animals and biological substances, including urine, feces, milk, semen, and saliva, or indirectly via contact or ingestion of contaminated animal-derived food products [126]. This is, however, the main route for the cause of enteric infections in humans with the zoonotic bacterial pathogens listed above. On the other hand, antibiotic-resistant bacterial strains can be transmitted from humans, including the workers on the farm and their families, to food animals, since it is noted that the digestive tract and the skin of these humans harbour high numbers of commensals, notably Staphylococcus aureus [127]. Notwithstanding, the feasibility of transmission is reliant on geographical location, ethnic/cultural practices, religion, hygienic status, farm size, and the type of integrated farming [128]. However, this status quo is true in the rural settings in developing countries, where there is close contact between the animals (specifically, poultry) and humans. Since farming of indigenous-species animals in small numbers appears to be the most common practice of poultry production systems, in this regard, the animals depend on scavenging as a source of food [37,129]. Also, in the developing world, biosecurity and food safety measures are inadequate, thus facilitating the direct and indirect mode of acquiring antibiotic-resistant bacterial strains and their resistance genes. Kagambéga et al. [130] isolated and characterized S. typhimurium from poultry and humans that were resistant to the same antibiotics, and harboured the same phage, DT 56, which demonstrated close-relatedness as revealed by pulse field gel electrophoresis.
Lipsitch et al. [131] presented three mechanisms through which antibiotic resistance originating from agriculture can threaten human health, as follows: an individual might be infected by a resistant bacterial pathogen via direct contact or via ingestion of contaminated meat, milk, eggs, or water, and not transmit to other humans. In another scenario, a person might be infected with a resistant pathogen via the aforementioned pathways, with ongoing transmission to other humans and causing infections in some of the individuals. Thirdly, resistance genes derived from the agricultural settings are being introduced into human pathogens by lateral gene transfer. Apart from acquiring resistance by these bacteria, they can equally receive additional virulent genetic elements, leading to an increase in pathogenicity or virulence [39,132].

ORDER  NOW

Wegener et al. [133] emphasized that the observed level of antibiotic resistance is closely associated with the amount that is being consumed. Apparently, the level of antibiotic resistance of these bacteria relies on the quantity and the effects of antibiotics in the natural environment originating from antibiotic management within the agricultural and healthcare settings, as well as the antibiotic prescription guidelines. According to Sahoo et al. [16], the antibiotic prescription is influenced by geographical and climatic factors, socioeconomic conditions, local population density, the behaviour of a particular community towards antibiotic prescription or consumption, and supplier incentives to the prescribers in conjunction to the type of pathogen.Antibiotic Resistance in Preschool Children Essay
All the same, antibiotic resistance has adverse effects on patients, healthcare systems, and society [134]. More specifically, patients witness a more severe underlying infection, are administered less efficacious but more toxic antibacterial agents, and receive broad-spectrum antibacterial agents, which are so-called reserved or last resorts as an empirical antibiotic regimen [132]. These might result in treatment failure, as well as an increase in the cost of human therapies, due to the severity and persistence of the diseases, added to long hospital stay and prolonged therapy, respectively [135,136]. Antibiotic resistance equally limits the choice of antibiotics to be implemented in therapy and jeopardizes the chances of the effectiveness of the existing potent antibiotics in treatment regimens used for the eradication of serious but common diseases in the future [137]. The rising level of antibiotic-resistant bacterial pathogens will eventually hamper future treatment and the prevention of infectious diseases in both animals and humans [138]. Also, the incidence of antibiotic resistance is very critical to the immunocompromised population, since these individuals rely solely on the use of antimicrobials as a defense against pathogens [139]. Unfavourably, the rise in antibiotic resistance presents a potential threat to surgical and advanced therapeutic procedures, including transplantation or anticancer therapy that involve immunosuppression. Therefore, these medical procedures need vigorous anti-infective preventive therapies [2,134]. However, antibiotic resistance can cause the death of individuals which is the most severe outcome [134].
(d) Principles of antibiotic use and antibiotic resistance in the clinical and agricultural sectors in both developing and developed countries
The principles or standards established to guide antibiotic use in both agricultural and clinical settings vary between the developed and developing countries, as well as differs from one country to the other. This is visualised from the variation in the antibiotic consumption pattern across the globe, highlighted by Van Boeckel et al. [12]. It is greatly influenced by the antibiotic policies which govern antibiotic use concerning the antibiotic manufacture, antibiotic dispensation, and antibiotic prescription (inappropriate choice and dosing of drugs) of a particular country [140]. However, antibiotic policies are negatively affected by the socioeconomic level (infectious disease burden, income level, educational status, etc.), large population size, and heterogeneity disparity in the healthcare systems in developing countries [11].
The dearth of functioning antibiotic policies has culminated in the inappropriate use of antibiotics. Van Boeckel et al. [12] stated that about 50% of antimicrobials are used incongruously, regardless of the setting owing to lack of antimicrobial stewardship. Antibiotic Resistance in Preschool Children Essay Antimicrobial stewardship (formerly called antibiotic policy) entails the choice, dosing, route, and duration of administration of a particular antimicrobial agent. It is defined as the administration of the right drug at the right dose, through the right route, at the right time, to the right patient, to ensure the best clinical outcome for treatment or prevention, thereby causing least harm or toxicity in the patient and future patients [141]. The leading goal of antimicrobial stewardship is to optimize clinical outcomes, to maximize clinical cure or prevention, and to limit the unintended penalties of antibiotic use, including toxicity and the emergence of antibiotic-resistant bacteria [141,142].
From the clinical perspective, antibiotics are the most widely used therapeutic agents worldwide. To avoid the irrational and unnecessary use of antibiotics, it is imperative that antimicrobial stewardship is implemented regarding prescriptions guided by appropriate principles based on the patient’s characteristics, the characteristics of the disease-causing agent, and the colonizing microflora [142]. More specifically, that the pharmacokinetics and pharmacodynamics of the drug, as well as host factors are not left out, in an appropriate antibiotic therapy. The microbiological diagnosis presents as the key procedure in any therapeutic process, where the etiologic agent and the antimicrobial susceptibility patterns, as well as surveillance of the resistance of the pathogen are conducted. Appropriate specimens are collected and submitted to the microbiology laboratory for diagnosis. Diagnosis, in most cases, often relies on culture-based methods which are time-consuming and take several days for a positive result to be obtained. As a consequence, other rapid microbiological methods, including rapid polymerase chain reaction and mass spectrometry have been adopted, and stand a better chance for the future [143].
In addition, new and rapid molecular tests, including peptide nucleic acid and matrix-assisted laser desorption/ionization technologies have been introduced, that identify common organisms from positive cultures within several minutes [141]. However, especially in critically ill patients (e.g., endocarditis, bacterial meningitis) that are hospitalised, an empirical therapy is decided guided by the clinical presentation of the patients and the site of the infection, in order to reduce the morbidity and mortality rate. Broad-spectrum antibiotics are used that cover a broad spectrum of suspected and non-susceptible pathogens responsible for the clinical presentation [144]. Usually, the combination therapy relies on the synergistic action of the recommended drugs to clear, more rapidly, the infecting microorganism or infection caused by resistant bacteria to multiple antibiotics, or infections caused by more than one organism, as well as to truncate antibiotic therapy [143]. On the other hand, a definitive therapy is employed following the release of the laboratory results on the specific etiologic agent, with the critical opinion to narrow the antibiotic spectrum. Disapprovingly, the definitive therapy is described as the most important component of the antibiotic therapy, as it optimises treatment, reduces costs and toxicity, added to its great possibility of preventing the development of antibiotic resistance [145]. Also, very important at this junction, the clinician consults the modes of action of these drugs, whether they are bacteriostatic or bactericidal, but in more serious infections, bactericidal antibiotics are preferred. In summary, antibiotics maybe consumed in therapies/treatments as first, second, and third line antibiotics. First line drugs are administered to patients guided by the clinical presentation and antibiotic susceptibility results, and are based on their broad availability, relatively low cost, and tolerance. However, if a patient fails to respond to the initial drugs or develops intolerance to drugs and/or relapse of infection occurs, other drugs, known as the second line, are added to the treatment. Also, if resistance to the second line drugs is observed, third line drugs are included in the treatment, even though these drugs are associated with higher risk of toxicity and other side effects, unlike the first and second line drugs [144].
As indicated above, the use of antibiotics in agricultural settings is not only for therapeutic purposes. The employment of antibiotics in different applications in food animals is described as therapeutic use, prophylactic use, and sub-therapeutic use [146]. Ideally, the use of antibiotics in food animals for therapeutic purposes should be accompanied by antibiotic susceptibility testing (AST). Altogether, the results, the age and immune status of the animal, attributes of the drug (pharmacokinetics and pharmacodynamics), and the cost of the drug, are considered in order to decide on the appropriate drug to be used. As in human medicine, the antibiotics during therapy can be categorized into first, second, and third line drugs [147]. However, with respect to the different animal type and practice, the antibiotics vary in the classification, but the principle still remains that the first line drugs are often used in the treatment of most bacterial infections, and the second and third line options are rarely needed.Antibiotic Resistance in Preschool Children Essay
However, there is an obvious link between antibiotic use and resistance, both on an individual and population level. The high disease burden, poor hygienic and sanitation conditions, limited access to available antibiotics (due to poverty), disparity in healthcare systems and personnels, over-the-counter purchase of drugs, lack of stringent antibiotic policies (that affect the quality and potency of drugs produced), unregulated prescription principles (that lead to self-mediation and prescription by untrained persons), patient expectations, financial incentives to healthcare providers to prescribe antibiotics in developing countries, cause inappropriate use of antibiotics, resulting in antibiotic resistance [140,148,149]. Thus, there exists differences in the antibiotic resistance levels between and within countries. For instance, Gebeyehu et al. [150] gave an insight into the inappropriate use of antibiotics in the rural (29.2%) and urban (31.1%) communities in North West Ethiopia, and attributed the practice to younger age, involvement with a job, paucity of knowledge on the use of antibiotic preparations of humans to animals, and dissatisfaction with the healthcare services.
(e) Containment of antibiotic resistance or strategies implemented to maintain appropriate use of antibiotics
Nevertheless, across the globe, countries, states, and regions within the countries have implemented several procedures to regulate and reinforce rational and prudent use of antibiotics in both the clinical and agricultural sectors, in order to contain antibiotic resistance. All these procedures are necessary to conserve the available antibiotics and to maintain their effectiveness. Antimicrobial stewardship occupies a central role in the endeavour to avoid misuse, overuse, or abuse of antibiotics in both settings.Antibiotic Resistance in Preschool Children Essay
I. Clinical sector
In the clinical sector, the front-end or preprescription, and the back-end or postprescription approach are implemented with different techniques/strategies to optimize the use of antibiotics. These techniques include formulary restrictions, order sets and treatment algorithms, clinical guidelines, education, pharmacodynamic dose optimization, computer-assisted decision support system, pharmacist-driven intravenous to oral switch programs, pharmacy dosing programs, and antibiotic cycling [141]. The back-end approach offers as a better option because it uses prospective review and feedback, and focuses on de-escalation, which permits the modification (a change, adjustment/reduction, discontinuation) of initial empirical antibiotic therapy relying on the culture data, clinical status of the patient, as well as the other laboratory results [151]. The antibiotic de-escalation therapy is the key component within antimicrobial stewardship [152].
Apparently, McKenzie et al. [153] demonstrated that antibiotic restriction, education of prescribers and patients, and prescription feedbacks as antimicrobial stewardship strategies have improved with the prudent use of antibiotics in Australian hospitals. In addition, the California state in the United States has instituted antimicrobial stewardship in its state legislation [154]. In addition, some countries (e.g., Brazil and Mexico) have implemented policies to regulate and prohibit the sales of over-the-counter antibiotics without prescription [155]. Also, the Central Drugs Standard Control Organization (CDSCO) in India instigated Schedule H1, a stricter regulation, unlike Schedule 1, in a bid to prohibit the sales of over-the- counter antibiotics. According to Laxminarayan and Chaudhury [156], Schedule 1 harbours antibiotics that must be sold with a valid prescription issued by a registered medical practitioner, and the pharmacist is required to retain a separate register that carries the contact details of the prescribing doctor, the name of the patient, as well as the name and quantity of the drug that is dispensed. The register is kept for three years, and the information contained therein is subject to audit by the government.Antibiotic Resistance in Preschool Children Essay
Furthermore, the Medicine Control Council (MCC) as part of the National Drug Policy in South Africa subscribes to the World Health Organization Certification scheme. It is mandated to register and relicense, conduct dossier-based medicine evaluation and laboratory-based testing of all medicines utilized in the country in conformity to the criteria for medical evaluation and good manufacturing practice. Moreover, Essential Drug Lists (EDLs) and Standard Treatment Guidelines (STGs) are developed as part of the strategy of National Health policy (NHP) in South Africa, so as to ensure that drugs are readily available and accessible at primary care and at the hospital level, in addition to limiting the choice of antibiotics use via replacement with formularies in the public sector. Thus, the practice results rational prescribing [157]. Gelband and Duse [158] highlighted that as a regulatory strategy in South Africa, only licensed practitioners might prescribe and/or dispense antibiotics, and the antibiotics are available only on prescription, but not bought over the counter like in other developing countries. In the same way, antibiotic use was substantially decreased at the primary care in Thailand, as well as nationwide actions were demonstrated to address the problem of inappropriate antibiotic use through strengthening of hospital drug and therapeutics committee, engagement in a project based on multifaceted behavioural change intervention, and updating of its essential medicine lists on a regular basis [159].
Surveillance is the pivot in any control strategy directed against infections in a clinical setting and antimicrobial resistance. Antibiotic surveillance is regarded as the keystone in endorsing antibiotic stewardship, and eases the control of antibiotic resistance. It is also considered as the force behind the programmes geared towards antimicrobial resistance, since it generates reliable and crucial data that can be used to formulate policies on antibiotic use to promote accurate prescriptions of drugs [160]. According to the Global Antibiotic Resistance Partnership—India [161], real changes in antibiotic consumption or dissemination of resistant bacteria can only be appreciated and/or supported when the resistance level is known and tracked over time, unlike undergoing any type of surveillance. Hence, surveillance of antibiotic resistance complements the surveillance of antibiotic use, and obtained data can be implemented to evaluate the success of intervention programmes. Therefore, salient data required for clinical decision making and national policies can be assembled via surveillance of antibiotic use and antibiotic resistance [162].Antibiotic Resistance in Preschool Children Essay
According to Lowmann [163], the clinical microbiology laboratory undertakes a central role in achieving the key motives of antibiotic stewardship by providing data on culture and susceptibility of the specific patient, and insights for surveillance activities that guides the selection of antibiotics for empirical therapy. Monitoring the consumption of antibiotics is inevitable, as it generates data that can assist in the design and evaluation of interventions aimed at optimizing the use of these antibiotics and prevent rising resistance [155]. The World Health Organisation [164] and the Global Action Plan [165] advocated that the quantity and pattern of antibiotics consumed should be monitored as part of surveillance. Pereko and colleagues [160] analyzed prescription claims data and sales data from 2008 to 2011 in the private sector in Namibia to obtain the number of prescriptions that contained antibiotics and the volume of units sold. The findings highlighted the highest antibiotic consumption by females (53%), followed by individuals of age, 18–45 years (41%) and 34% in Windhoek, with combined therapy of amoxicillin/clavulanic acid as the post prevalent agents used which belong to the family of penicillins.

The term antibiotics literally means “against life”; in this case, against microbes. There are many types of antibiotics—antibacterials, antivirals, antifungals, and antiparasitics. Some drugs are effective against many organisms; these are called broad-spectrum antibiotics. Others are effective against just a few organisms and are called narrowspectrum antibiotics. The most commonly used antibiotics are antibacterials. Your child may have received ampicillin for an ear infection or penicillin for a strep throat.

When a child is sick, parents worry. Even if he has only a mild cold that makes him cranky and restless or an achy ear that only hurts a little, these times can be very stressful. Of course, you want him to get the best possible treatment. For many parents, this means taking him to the pediatrician and leaving the office with a prescription for antibiotics.Antibiotic Resistance in Preschool Children Essay

But that isn’t necessarily what will happen during the doctor’s visit. After examining your youngster, your pediatrician may tell you that based on your child’s symptoms and perhaps some test results, antibiotics just are not necessary.
Many parents are surprised by this decision. After all, antibiotics are powerful medicines that have eased human pain and suffering for decades. They have even saved lives. But most doctors aren’t as quick to reach for their prescription pads as they once were. In recent years, they’re realizing there is a downside to choosing antibiotics—if these medicines are used when they’re not needed or they’re taken incorrectly, they can actually place your child at a greater health risk. That’s right—antibiotics have to be prescribed and used with care, or their potential benefits will decrease for everyone.

A Look Back
Serious diseases that once killed thousands of youngsters each year have been almost eliminated in many parts of the world because of the widespread use of childhood vaccinations.

In much the same way, the discovery of antimicrobial drugs (antibiotics) was one of the most significant medical achievements of the 20th century. There are several types of antimicrobials—antibacterials, antivirals, antifungals, and antiparasitic drugs. (Although antibacterials are often referred to by the general term antibiotics, we will use the more precise term.) Of course, antimicrobials aren’t magic bullets that can heal every disease. When used at the right time, they can cure many serious and life-threatening illnesses.Antibiotic Resistance in Preschool Children Essay

Antibacterials are specifically designed to treat bacterial infections. Billions of microscopic bacteria normally live on the skin, in the gut, and in our mouths and throats. Most are harmless to humans, but some are pathogenic (disease producing) and can cause infections in the ears, throat, skin, and other parts of the body. In the pre-antibiotic era of the early 1900s, people had no medicines against these common germs and as a result, human suffering was enormous. Even though the body’s disease-fighting immune system can often successfully fight off bacterial infections, sometimes the germs (microbes) are too strong and your child can get sick. For example,

Before antibiotics, 90% of children with bacterial meningitis died. Among those children who lived, most had severe and lasting disabilities, from deafness to mental retardation.

Strep throat was at times a fatal disease, and ear infections sometimes spread from the ear to the brain, causing severe problems.

Other serious infections, from tuberculosis to pneumonia to whooping cough, were caused by aggressive bacteria that reproduced with extraordinary speed and led to serious illness and sometimes death.

The Emergence of Penicillin
With the discovery of penicillin and the dawning of the antibiotic era, the body’s own defenses gained a powerful ally. In the 1920s, British scientist Alexander Fleming was working in his laboratory at St. Mary’s Hospital in London when almost by accident, he discovered a naturally growing substance that could attack certain bacteria. In one of his experiments in 1928, Fleming observed colonies of the common Staphylococcus aureus bacteria that had been worn down or killed by mold growing on the same plate or petri dish. He determined that the mold made a substance that could dissolve the bacteria. He called this substance penicillin, named after the Penicillium mold that made it. Fleming and others conducted a series of experiments over the next 2 decades using penicillin removed from mold cultures that showed its ability to destroy infectious bacteria.Antibiotic Resistance in Preschool Children Essay

Before long, other researchers in Europe and the United States started recreating Fleming’s experiments. They were able to make enough penicillin to begin testing it in animals and then humans. Starting in 1941, they found that even low levels of penicillin cured very serious infections and saved many lives. For his discoveries, Alexander Fleming won the Nobel Prize in Physiology and Medicine.

Drug companies were very interested in this discovery and started making penicillin for commercial purposes. It was used widely for treating soldiers during World War II, curing battlefield wound infections and pneumonia. By the mid- to late 1940s, it became widely accessible for the general public. Newspaper headlines hailed it as a miracle drug (even though no medicine has ever really fit that description).

With the success of penicillin, the race to produce other antibiotics began. Today, pediatricians and other doctors can choose from dozens of antibiotics now on the market, and they’re being prescribed in very high numbers. At least 150 million antibiotic prescriptions are written in the United States each year, many of them for children.

Problems With Antibiotics
The success of antibiotics has been impressive. At the same time, however, excitement about them has been tempered by a phenomenon called antibiotic resistance. This is a problem that surfaced not long after the introduction of penicillin and now threatens the usefulness of these important medicines.Antibiotic Resistance in Preschool Children Essay

Almost from the beginning, doctors noted that in some cases, penicillin was not useful against certain strains of Staphylococcus aureus (bacteria that causes skin infections). Since then, this problem of resistance has grown worse, involving other bacteria and antibiotics. This is a public health concern. Increasingly, some serious infections have become more difficult to treat, forcing doctors to prescribe a second or even third antibiotic when the first treatment does not work.

In light of this growing antibiotic resistance, many doctors have become much more careful in the way they prescribe these medicines. They see the importance of giving antibiotics only when they’re absolutely necessary. In fact, one recent survey of office-based physicians, published in JAMA: The Journal of the American Medical Association in 2002, showed that doctors lowered the number of antibiotic prescriptions they prescribed for children with common respiratory infections by about 40% during the 1990s.

Antibiotics should be used wisely and only as directed by your pediatrician. Following these guidelines, their life-saving properties will be preserved for your child and generations to come. Antibiotic Resistance in Preschool Children Essay